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Abstract
The assessment of bone (skeletal) age via X-ray imaging of the left hand is a useful measurement to
understand and diagnose growth abnormalities in pediatric patients with endocrine (hormone) disorders. As
bone age is typically determined by medical subspecialists by comparing a patient’s radiographs against
medical atlases of reference images, we proposed the use of a generative adversarial network (GAN) to create
additional images of hands for clinical training purposes.
Pre-processed and annotated data which was originally provided by the Radiology Society of North America
2017 Bone Age challenge was used to train a progressively growing GAN (PGGAN). The PGGAN successfully
generated images with high visual similarity to real images in the original dataset. A convolutional neural
network (CNN) was trained to predict bone age on the annotated with mean absolute error of 3.7 months on
the training set and 8.8 months on the test set. We used the CNN to yield age predictions on 200,000
GAN-generated images with high visual similarity of generated images to their real image counterparts with
age predictions which were similar. LASSO regression of the CNN-predicted ages on the GAN’s input vectors
demonstrated a linear correlation, suggesting an embedding of bone age in the GAN’s latent space which can
be leveraged to control the GAN outputs based on desired bone age.

Introduction
Background
The assessment of bone (skeletal) age is a useful measurement to understand and diagnose growth
abnormalities in pediatric patients with endocrine (hormone) disorders. The typical determination of bone age
is conducted through radiography of the left hand which is then compared against medical atlases of reference
images.
For our project, we are interested in training a generative adversarial network (GAN) to create novel images of
hand radiographs. We are interested in the quality of the outputs along with how the model incorporates and
encodes age. As the current standard of medical care for the evaluation of bone age involves physician
determination of skeletal maturity by comparison of clinical images against reference images, the ability to
generate synthetic images via GANs could be used to expand the corpus of reference images available for
clinical training while preserving patient privacy and ensuring that population-specific characteristics of images
(rather than patient-specific characteristics) of are modelled.
A GAN is composed of two artificial neural networks, a generator that creates novel data and a discriminator
that estimates a probability that a sample is real or fake (Goodfellow 2014). The training process can be
summarized as a two-step game. First, the generator produces a batch of novel samples which are mixed with
real samples to train the discriminator to distinguish between real and fake data. Then, the generator is trained
by trying to trick the discriminator to predict that another batch of novel samples are real. Thus, the generator
learns to model the data distribution without ever “seeing” a real data sample.
GANs are notoriously difficult to train and understanding the theoretical basis for the most common issues is
still ongoing. In most cases, the field has been guided by an evolving set of best practices such as using
narrow Gaussian distributions to initialize network weights and scaling the input into each layer using Batch
Normalization (Ioffe 2015, Radford 2015).
One of the most frequently cited problems is “mode collapse,” a scenario in which the generator learns to
produce just one type out of output very convincingly, neglecting the broader diversity of the data (e.g.
generating images of just shoes when the original data has images of many types of clothing). As it continues
to successfully deceive the discriminator, the generator over-optimizes for this one mode of output, thus losing
the ability to generalize and learn the entire data distribution. Some attempts to address this problem have
been to use a Wassterstein loss function (Arjovsky 2017) or incorporate measurements of the diversity of a
batch of samples as inputs into the discriminator (where low diversity indicates mode collapse of the



generator).
Another common difficulty often met when training a GAN is that the discriminator can become too advanced to
provide meaningful guidance to the generator. This problem results in a vanishing gradient when trying to train
the generator, preventing the discriminator from providing meaningful direction to the generator. The use of a
Wasserstein loss function (Arjovsky 2017) can battle this issue by preventing vanishing gradients even when
the discriminator has reached optimality.
An exciting advancement from Karras et al. was their description of the “progressive growing” of GANs
(PGGAN) during the training process to improve the generation of the high-resolution images (Karras 2018).
As the researchers explained, the difficulty of producing larger images is that they are easier to tell apart,
amplifying the vanishing gradient problem discussed above (Odena 2017). By slowly growing both the
generator and discriminator, the speed and success of training a GAN was greatly improved. Briefly, the
authors proposed a technique that separates the training process into two phases. In one phase, the generator
and discriminator are trained like normal. The second phase consists of adding a larger output layer to the
generator and a matching input layer to the discriminator. The weights of these new layers are linearly faded-in
over several epochs until the old layers are no longer contributing to either network. The process continues
until the desired output dimensions are achieved.
As a GAN trains, it “learns” an encoding of its latent input space, the interpretation of which can enable control
over various features of the model’s output (Goodfellow 2014, Radford 2015). Methods for controlling the
output of GANs, still an active area of research, can be divided into two groups: implicit and explicit. Implicit
methods attempt to map the learned input space of the generator to desired features of the output (Lee 2019,
Shen 2019, Härkönen 2020, Jahanian 2020, Yang 2020). Explicit methods, on the other hand, divide the input
space a priori into specific subspaces that each correspond to a different controllable property (Mirza 2014,
Odena 2017, Shoshan 2021). The benefit of an explicitly controllable GAN is that it avoids the issue of
entanglement often found when trying to map the input space in an implicitly controllable GAN. In this context,
entanglement refers to changes of one controllable feature affecting another; e.g. increasing the desired age of
a generated human face also turns the hair more gray. By modeling these properties as separate subspaces of
the generator’s input, the features will necessarily be disentangled.
Primary Research Questions

1. Can we train a generative adversarial network (GAN) to generate realistic hand X-ray images?
2. Can we identify a linear embedding of age in the GAN’s input space?

Methods
Data summary
The labelled data was provided by the Radiology Society of North America, RSNA Pediatric Bone Age
Challenge (2017) dataset co-developed by Stanford University and the University of Colorado (Halabi 2019).
The image data consists of X-ray images of patients’ hands with accompanying annotations of bone age. In the
training (12,611 images) and validation (1,425 images) datasets, sex and bone age estimate were annotated
based on the clinical radiology report at the time of imaging. In the separate testing dataset (200 images) used
in the challenge, bone age annotation was determined by a weighted average of multiple expert estimates
which corrected for reviewer-specific bias. The images were available in the PNG format but varied in their
resolution (from 560 x 1100 pixels to 2460 x 2970 pixels).
Data acquisition and processing
Upon exploration of the initial dataset provided by the RSNA, we found that there were many image quality
issues and visual artifacts which would complicate accurate GAN and CNN training (Fig. 1). In the original
RSNA bone age challenge, pre-processing was described as a necessary step, and the groups approached
this task in a variety of interesting ways (Halabi 2019).
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Figure 1. Examples of image quality issues and artifacts.

First, we tried using a publicly available, pre-trained neural network for instance segmentation of photographic
images of hands called Google MediaPipe Hands (Zhang 2020). This was not successful in detecting the X-ray
images of hands from the background likely because the model was trained on colored, photographic images
of human hands as opposed to grayscale images including skeletal features. Therefore, we were curious about
the potential to use another pre-trained neural network called Pixellib, a mask R-CNN trained on the COCO
dataset (Lin 2015). This was ultimately unsuccessful, as none of the objects in the dataset appeared to
resemble the images of the radiographic hand closely enough (Fig. 2).

Figure 2. Instance segmentation with pixellib using pre-trained R-CNN ResNet50 model on the COCO dataset (Lin
2015) without additional training specific to our dataset fails to reliably segment X-ray images of hands.

Our next attempt at this problem included the manual annotation of 300 images for object detection using the
TensorFlow 2.0 Objection Detection API with the EfficientDet-D0 model (Tan 2019). We were able to detect a
hand and approximate bounding box on all validation images, but bounding boxes did not achieve sufficient
accuracy to rely upon this implementation for segmentation purposes (Fig. 3).
Because of heterogeneity of image contrast and background artifacts across the images, basic thresholding
methods for image segmentation alone were insufficient to reliably extract hand data without loss of
information, and more sophisticated algorithms, such as contrast limited adaptive histogram equalization
(CLAHE) were found to provide better results on visual inspection of images.
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Figure 3. Example of manually annotated images used to train our objection detection model (top) & results from
the objection detection model (bottom), showing adequate detection but incomplete or partial bounding boxes.

Given the computational and time limitations of this project, we ultimately decided to leverage a pre-processed
version of the RSNA bone age dataset which employed iterative image segmentation techniques using U-net,
image registration techniques using a VGG family of models to create a common orientation/alignment of the
hand images, and contrast normalization (Iglovikov 2018) in order to proceed efficiently with the primary
research question of training and analyzing the GAN (Neuro, Inc. 2021). This dataset consisted of 12,611
training images and 200 test images with uniform dimensions of 1600 x 2080 pixels.
Progressive Growing GAN to create hand radiographs
We trained a Progressive Growing GAN (PGGAN) to produce novel, yet realistic, hand radiographs. We
adapted the code from Karras et al. (Karras 2017) to produce a GAN with a 512 dimensional input space and
produce output with a resolution of 1024 x 1024. We used the same training schedule, optimizer, and
hyperparameters as described in the original implementation as the limited time restricted our ability to explore
further modifications. We trained the model on Harvard Medical School’s high-performance computing cluster
using 4 TeslaV100 GPUs. The model required about 3 days and 7 hours to converge.
GAN evaluation
We implemented four quantitative measures to assess the GAN’s ability to generate realistic images while still
learning the diversity of the dataset (avoiding mode collapse). Multi-scale structural similarity (MS-SSIM) is a
multi-scale form of a similarity metric previously optimized for the human perceptual system (Wang 2004a,
Wang 2004b, Ma 2016, Odena 2017, Karras 2017). The Inception score measures both the realism of an
image and the diversity over all of the images (Salimans 2016). More precisely, it makes a prediction on the
classification of a sampling of images from the GAN using an Inception model trained on ImageNet. For each
image, the entropy is measured as the negative of the sum of the probability times the log probability for each
class. A lower entropy indicates that the image is likely to belong to a single classification (i.e. is realistic). The
diversity of the image set is estimated as the average Kullback-Leibler divergence between the conditional and
marginal probabilities. These values are then combined to produce the Inception score between 1 and 1000
(the number of classes in ImageNet) where a larger value is better. We also implemented the Fréchet Inception
distance (FID) score which is a variant of the IS, but is often better at recognizing similarity between generated
and real images (Heusel 2017). Finally, we used the sliced Wassertstein distance (SWD) that was originally
introduced alongside the PGGAN (Karras 2017). This metric compares the local structure of patches from
images at a variety of sizes, thus providing a measure of realism at different scales. We implemented the
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MS-SSIM on 5,000 images, IS on 5,000 images, FID on 10,000 images, and SWD on 1,000 images at regular
intervals during the training process.
We complemented the quantitative measures described above with a qualitative measure in the form of a
nearest neighbors comparison. How to define the distance between images for this comparison can vary, and
we employed two different methods: 1) the sum of the Euclidean distance of the matrices of pixels composing
two images, 2) based on the weights generated in the last layer of our CNN (composed of 2048 values) when
analyzing the image to determine its bone age. The second metric may more effectively capture true features
of the image relating to bone age, compared with a naive pixel-to-pixel comparison. These generated images
were then visually analyzed to qualitatively assess to what extent the GAN was over- or underfitting the data.
Convolutional Neural Network to predict the age of a hand radiograph
We trained a convolutional neural network via transfer learning using a modified version of the Xception model
from Keras Applications & TensorFlow 2 with pre-trained ImageNet weights (Russakovsky 2015) used to
accelerate the training process on the bone age images. The Xception model was chosen because of its
compact size, network depth (rather than width), and high accuracy reported for prediction on ImageNet
validation data. Because the models used for ImageNet predictions result in multiclass likelihood estimation,
the model architecture was modified to output continuous data as a regression task for bone age prediction
(rather than classification).

Results
A CNN accurately predicted the age of a patient from their hand radiograph
Overall in the original training data, we found higher representation of images from patients with bone age
between 8 years and 14 years, collectively comprising 72.4% of the input data (compared to the younger or
older ages). The CNN yielded predictions with a mean absolute error (MAE) of 3.7 months on the training
(in-bag) data (median absolute error 2.2 months). On test (out-of-bag) data, predictions showed a mean
absolute error of 8.8 months (median absolute error 7.4 months). When stratifying the absolute error by
annotated bone age, higher error was noted among the youngest and oldest patients in the training set; these
findings were similarly noted, albeit to a lesser degree on the test set consisting of 200 images (Fig. 4).

Figure 4. MAE of predictions by real age in years for training (top) and test (bottom) data.
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The PGGAN reliably produced realistic hand radiographs
During the training process, the resolution of the generator’s output and discriminator’s input concomitantly
increased in resolution, helping the generator first learn large-scale features before learning small-scale details
(Fig. 5a). The PGGAN was successfully able to produce realistic images as judged by the members of this
project (Fig. 5b). We noted that the model was seemingly able to capture the diversity of many features
including position of the fingers, amount of wrist and forearm included, and boneage/development (analyzed
more rigorously below). Notably, there were rare images with obvious artifacts indicating that the model had yet
to fully converge (Fig. 5c).
As our goal was to interpret the GAN’s encoding of the latent input space, we attempted to train PGGAN
models with fewer input dimensions in order to reduce inherent complexity caused by the “curse of
dimensionality.” In attempts with just 20 or 100 dimensions (compared to the default 512 dimensions we used
first), the models were less stable during the resolution changes of the training process. In both scenarios,
without modifications to the training schedule, the generators began to output distorted images (Fig. 5d). To
rule out the possibility that random flukes perverted the training processes, both were restarted using model
snapshots from earlier timepoints free of obvious signs of failure, but the models continued to fail at similar
phases as before. We believe this is linked to the size of the input space because the 20-dimensional-input
GAN consistently failed earlier than the 100-dimensional-input GAN. We adjusted the training schedule to
account for these difficulties by increasing the number of epochs over which a new layer is phased in to the
generator and discriminator, but unfortunately were unable to complete the training within the time restrictions
of this project. Taken together, this suggests that the size of the GAN’s input space is associated with its
representational capacity. For the remainder of the project, we continued with the 512-dimensional-input
PGGAN.
Evaluating and comparing GANs is a daunting task, and while many measures have been introduced, there is
no consensus as to which measure best captures the strengths and limitations of models (Borji 2019). Our
GAN demonstrated great success in creating realistic images when assessed by quantitative metrics of
MS-SSIM, IS, FID, and SWD (Fig. 6). All metrics converged very close or exactly to values for real hand
radiographs. The IS is likely not a valuable metric for our purpose because of the high degree of homogeneity
of the dataset relative to other common image datasets such as ImageNet of CIFAR-10. The SWD values
indicate that the PGGAN was able to learn both small- and large-scale features, though additional training may
lead to still better convergence for the small-scale features.

Figure 5. Examples from the PGGAN trained on hand radiographs. a. Increasing resolution of generated images over
the training process. b. Visually realistic, 1024x1024-resolution images from the PGGAN. c. Examples of generated
images with significant artifacts and errors d. Example outputs from failed training of the PGGAN with 20 (top) and 100
(bottom) input dimensions.
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Figure 6. Quantitative metrics of generated image realism. a. MS-SSIM, IS, and FID metrics for the PGGAN over the
training process (measured in thousands of images shown to the discriminator). Red, dashed horizontal lines indicate the
value when evaluated on real images. b. The SWD scores at different levels of the Laplcaian pyramid (represented as
resolution of the processed image) over the training process of the PGGAN. The blue line represents the average over all
resolutions.

The PGGAN produced novel hand radiographs
From our nearest neighbors analysis, it appeared as though the GAN was successfully producing images that
were highly realistic while not overfitting to the training data. Using the Euclidean distance between images as
a measure of similarity, we found that the sample GAN images closely matched some that appeared in the
training data (Fig. 7a). This indicated that the images generated by our GAN were realistic, but not pixel-perfect
replicas that the model had memorized. As a complementary analysis, we also utilized the weights in the last
layer of our CNN when predicting the age for each image as another measure of similarity between images. In
this analysis we found that the closest neighboring images in the training dataset were rather dissimilar,
including clear differences in how the hands were oriented (Fig. 7b). Nonetheless, these images were found to
be more similar to our generated image than any of the closest neighbors determined by Euclidean distance.
Indeed, we found that the true bone ages of these nearest neighbors were closer together than those found
from the Euclidean method (sample standard deviation 10.247 vs 21.354). As such, while the images
appeared very similar in a pixel-to-pixel comparison, the CNN noticed distinguishing features of age in the
bones that lead it to consider other real images in the training dataset to be more similar. Taken together, these
analyzes indicate that the GAN is neither overfitting nor underfitting the data, instead generating new, realistic
images.

a b
Figure 7. Nearest Neighbors Comparison. a. Nearest neighbors as determined by Euclidean distance summed over
each pixel’s RGB values in the image for a sample GAN image. b. Nearest neighbors as determined by the Euclidean
distance of our CNN’s last layer’s weights.
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Demonstration of an interpretable latent input space of the PGGAN
Thus far, we have demonstrated that we have trained a CNN to reliably predict the age of a patient given a
radiograph of his/her left hand and a PGGAN to generate novel, yet realistic, hand radiographs. Our next
objective was to use the CNN’s predictions on the ages of images generated by the PGGAN to interpret the
input space of the PGGAN. Due to time constraints, we were unable to fully address this goal, but we have
evidence that it is possible.
One piece of evidence to support this is that we successfully fit a LASSO regression model of the
CNN-predicted age regressed on the GAN’s input vectors. The regularization penalty strength coefficient was
determined as that which minimized the error over 10-fold cross validation. The error of the final LASSO model
was almost identical on the training and out-of-bag withheld data (11.6 ± 9.4 and 10.9 ± 9.0 months,
respectively; mean ± std. dev.), indicating that the LASSO did not overfit the data (Fig 8a). This demonstrates
that there was a linear embedding of age in at least part of the GAN’s latent space.

Figure 8. Evidence for embedding of age in the GAN’s latent input space. a. The predicted ages from the LASSO
model trained on latent GAN input vectors against the predicted ages from the CNN on the training data and unseen test
data. b. Predicted ages of each frame of Video 1 interpolating through the GANs latent space from younger to older
hands. The black points represent the predicted age by the CNN with red points indicating the original interpolation
vectors. The blue line is a LOESS regression to highlight the overall trend.

Another demonstration of this relationship was that we were able to find vectors of different ages near each
other that appeared to show a hand “aging” (Video 1). Interpolation between these points created realistic
videos of what appeared to be the aging of the hand’s skeletal structure including the formation of the carpals
and ossification of the growth plates of the phalanges. The predictions of the age of each frame by the trained
CNN supports this visual assertion (Fig. 8b). The interpolation points were found by starting with an input
vector corresponding to a generated image predicted to be of a specific age and then locating the nearest
vector corresponding to a generated image predicted to be slightly older than the first. This process, starting
from ages near 3 or 4 years old and using age gaps of 2 years, was able to reliably produce realistic
interpolations through age. We believe that additional optimizations (such as adaptively mapping the predicted
age of the local space around a starting input vector) could produce higher-fidelity interpolations, further
increasing the realism.
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Discussion
Interpretations/implications of your results
We were able to use the PGGAN to successfully generate images which visually appeared very similar to real
images. The range of visual similarity captured the positions and lengths of various fingers, the different
phases of development of the carpal bones, as well as the position and size of the forearm bones. We were
also able to successfully train a CNN to predict bone age of training and test images with mean absolute error
well under one year of age. The CNN was able to yield age predictions on all 200,000 of the GAN-generated
images, and the images of both real and generated images with similar age predictions appeared visually
similar to one another in skeletal maturity as determined by members of our team. Furthermore, LASSO
regression of the CNN-predicted ages on the GAN’s input vectors demonstrated a linear correlation,
suggesting an embedding of bone age in the GAN’s latent space.
These findings demonstrate that these methods can be used to successfully generate simulated X-ray images
of hands across a range of pediatric skeletal maturity. Given that the current standard of medical care for the
evaluation of bone age involves physician comparison of clinical images against reference images, these
methods could potentially be used to expand the corpus of reference images upon which clinical trainees can
hone their diagnostic skills. Furthermore, given that reference images in medical atlases do not often represent
the full spectrum of diversity represented in an entire population, the pipeline described during this
project—i.e., using vast amounts of raw clinical images, annotated in routine clinical practice with various
demographic labels, for the generation of simulated, representative images of certain population
subgroups—could be replicated to ensure adequate diversity of references images which take into
consideration any potential differences between (sub)groups of a population.
Limitations of the study
While overall successful, this project had a number of limitations. Notably, there were rare images with obvious
artifacts indicating that the PGGAN model had yet to fully converge. Time and computational resources (e.g.,
RAM, GPU) limited the degree to which more precise PGGAN and CNN models could be trained. Also,
because of imbalance in the annotated bone ages represented in the training data, models tended to generate
outputs resembling the more frequently represented portion of the population (i.e., images with bone age
between 8 and 14 years old). Adjusting the training process with resampling and/or data augmentation
techniques would likely improve these issues to ensure uniform modeling across the gamut of skeletal maturity.
While the team was able to benefit from some clinical expertise in qualitatively evaluating the radiographic
images—in addition to employing a range of quantitative and qualitative GAN metrics—we did not have a
medical subspecialist, such as a pediatric radiologist or pediatric endocrinologist, to help externally validate the
utility of these generated images in practice.
Future directions
Future work that would be fascinating to explore includes the explicit control of GAN outputs by a priori
segmenting the input space and building the enforcement of the predefined regions directly into the training
process and loss function. This ideally would include sex, demographics, and even potentially certain
endocrine conditions as controllable dimensions which could be presented to the GAN to generate
representative images. Experimenting with various training schedules and pre-processing steps to improve the
GAN performance and determine their effects on the GAN outputs, which would also be helpful in determining
the practicality of applying these methods to other image generation tasks outside of bone age (e.g.
representation of skin rashes on various skin tones).
Group Member Contributions
PH pre-processed the data and trained the CNN to predict patient age from a hand radiograph. JC was tasked
with training the PGGAN and analyzing its input space. MW performed the nearest-neighbor GAN evaluation
analyses. All members contributed to conducting literature research and creative discussions for all portions of
the project.
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